4730 Mark Scheme January 2008

4730 Mechanics 3

r	T .	1		1
1	(i) $[0.5(v_x - 5) = -3.5, 0.5(v_y - 0) = 2.4]$	M1		For using $I = m(v - u)$ in x or y direction
	Component of velocity in x-direction is –2ms ⁻¹	A1		
	Component of velocity in y-direction is 4.8ms ⁻¹	A1		
	Speed is 5.2ms ⁻¹	A1	4	AG
SR For	candidates who obtain the speed without finding the required	componen	ts of v	
	Components of momentum after impact are -1 and 2.4 Ns	B1] • • • • • • • • • • • • • • • • • • •
	Hence magnitude of momentum is 2.6 Ns and required	B1		
	speed is $2.6/0.5 = 5.2 \text{ms}^{-1}$			
	(ii)	M1		For using $I_y = m(0 - v_y)$ or
	(II)	IVII		$I_v = -y$ -component of I^{st} impulse
	Commonant is 2.4Ns	A1	2	T _y = -y-component of 1 impulse
	Component is -2.4Ns	AI		
2	(i)	M1		For 2 term equation, each term
_		1411		representing a relevant moment
	50.1: 0.75.2	A1		representing a relevant moment
	$50x1\sin\beta = 75x2\cos\beta$	AI		
	$\tan \beta = 3$	A1	3	AG
	(ii) Horizontal force is 75N	B1		
	Vertical force is 50N	B1	2	
ļ			<u>-</u>	For taking moments shout A for the
	(iii)	M1		For taking moments about A for the
				whole or for AB only
	For not more than one error in	A1		Where $\tan \alpha = 0.75$
	$Wx1\sin\alpha + 50(2\sin\alpha + 1\sin\beta) =$			
	$75(2\cos\alpha + 2\cos\beta)$ or Wx1sin α +			
	•			
	$50x2\sin\alpha = 75x2\cos\alpha$			
	0.6W + 107.4 = 167.4 or $0.6W + 60 = 120$	A1		
	W = 100	A1	4	
	T	T = = .	1	1=
3	(i)	M1		For using the principle of conservation
1		1111		
				of momentum in the i direction
	6x4 - 3x8 = 6a + 3b (0 = 2a + b)	A1		
	6x4 - 3x8 = 6a + 3b (0 = 2a + b) $(4 + 8)e = b - a (12e = b - a)$	A1		of momentum in the i direction
	$6x4 - 3x8 = 6a + 3b \qquad (0 = 2a + b)$	A1 M1	5	of momentum in the i direction
	6x4 - 3x8 = 6a + 3b (0 = 2a + b) $(4 + 8)e = b - a (12e = b - a)$	A1 M1 A1	5	of momentum in the i direction For using NEL
	6x4 - 3x8 = 6a + 3b $(0 = 2a + b)(4 + 8)e = b - a$ $(12e = b - a)Component is 4e \text{ ms}^{-1} to the left$	A1 M1 A1 A1	5	of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram
	6x4 - 3x8 = 6a + 3b $(0 = 2a + b)(4 + 8)e = b - a$ $(12e = b - a)Component is 4e ms-1 to the left$	A1 M1 A1 A1	5	of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$
	6x4 - 3x8 = 6a + 3b $(0 = 2a + b)(4 + 8)e = b - a$ $(12e = b - a)Component is 4e \text{ ms}^{-1} to the left$	A1 M1 A1 A1	5	of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram ft b = -2a or b = a + 12e For using ' j component of A's velocity
	6x4 - 3x8 = 6a + 3b $(0 = 2a + b)(4 + 8)e = b - a$ $(12e = b - a)Component is 4e \text{ ms}^{-1} to the left$	A1 M1 A1 A1 B1ft M1	5	of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram ft b = -2a or b = a + 12e For using ' j component of A's velocity remains unchanged'
	6x4 - 3x8 = 6a + 3b $(0 = 2a + b)(4 + 8)e = b - a$ $(12e = b - a)Component is 4e \text{ ms}^{-1} to the left(8e)^2 = (4e)^2 + v^2$	A1 M1 A1 A1 B1ft M1		of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram ft b = -2a or b = a + 12e For using ' j component of A's velocity
	6x4 - 3x8 = 6a + 3b $(0 = 2a + b)(4 + 8)e = b - a$ $(12e = b - a)Component is 4e \text{ ms}^{-1} to the left$	A1 M1 A1 A1 B1ft M1	5	of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram ft b = -2a or b = a + 12e For using ' j component of A's velocity remains unchanged'
4	6x4 - 3x8 = 6a + 3b $(0 = 2a + b)(4 + 8)e = b - a$ $(12e = b - a)Component is 4e \text{ ms}^{-1} to the left(ii) \qquad b = 8e \text{ ms}^{-1} (8e)^2 = (4e)^2 + v^2 v = 4$	A1 M1 A1 A1 B1ft M1		of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$
4	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is 4e ms ⁻¹ to the left $(ii) b = 8e ms^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$	A1 M1 A1 A1 B1ft M1 A1ft A1		of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram ft b = -2a or b = a + 12e For using ' j component of A's velocity remains unchanged'
4	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is 4e ms ⁻¹ to the left $(ii) b = 8e ms^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$	A1 M1 A1 A1 B1ft M1 A1ft A1		of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$
4	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is 4e ms ⁻¹ to the left $(ii) b = 8e \text{ ms}^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$	A1 M1 A1 A1 B1ft M1 A1ft A1		of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$ For using Newton's second law
4	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is 4e ms ⁻¹ to the left $(ii) b = 8e \text{ ms}^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$	A1 M1 A1 A1 B1ft M1 A1ft A1		of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$
4	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is 4e ms ⁻¹ to the left $(ii) b = 8e \text{ ms}^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$	A1 M1 A1 A1 B1ft M1 A1ft A1 M1 A1		of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$ For using Newton's second law For relevant manipulation
4	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is 4e ms ⁻¹ to the left $(ii) b = 8e \text{ ms}^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$	A1 M1 A1 A1 B1ft M1 A1ft A1		of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$ For using Newton's second law For relevant manipulation For synthetic division of v by
4	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is $4e ms^{-1}$ to the left $(ii) b = 8e ms^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v}\right)\right]$	A1 M1 A1 A1 B1ft M1 A1ft A1 M1 A1 M1	4	of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$ For using Newton's second law For relevant manipulation For synthetic division of v by $g - 0.49v$, or equivalent
4	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is $4e ms^{-1}$ to the left $(ii) b = 8e ms^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v}\right)\right]$	A1 M1 A1 A1 B1ft M1 A1ft A1 M1 M1		of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$ For using Newton's second law For relevant manipulation For synthetic division of v by
4	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is $4e ms^{-1}$ to the left $(ii) b = 8e ms^{-1}$ $(8e)^2 = (4e)^2 + v^2 $ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v}\right)\right]$ $\left(\frac{20}{20 - v} - 1\right) \frac{dv}{dx} = 0.49$	A1 M1 A1 A1 B1ft M1 A1ft A1 M1 A1 M1 A1	4	of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$ For using Newton's second law For relevant manipulation For synthetic division of v by v
4	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is $4e ms^{-1}$ to the left $(ii) b = 8e ms^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v}\right)\right]$	A1 M1 A1 A1 B1ft M1 A1ft A1 M1 A1 M1	4	of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$ For using Newton's second law For relevant manipulation For synthetic division of v by $g - 0.49v$, or equivalent AG For separating the variables and
4	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is $4e ms^{-1}$ to the left $(ii) b = 8e ms^{-1}$ $(8e)^2 = (4e)^2 + v^2 v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v}\right)\right]$ $\left(\frac{20}{20 - v} - 1\right) \frac{dv}{dx} = 0.49$ (ii)	A1 M1 A1 A1 B1ft M1 A1ft A1 M1 A1 M1 M1 M1 M1	4	of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$ For using Newton's second law For relevant manipulation For synthetic division of v by v
4	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is $4e ms^{-1}$ to the left $(ii) b = 8e ms^{-1}$ $(8e)^2 = (4e)^2 + v^2 v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v}\right)\right]$ $\left(\frac{20}{20 - v} - 1\right) \frac{dv}{dx} = 0.49$ (ii)	A1 M1 A1 A1 B1ft M1 A1ft A1 M1 A1 M1 A1	4	of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$ For using Newton's second law For relevant manipulation For synthetic division of v by $g - 0.49v$, or equivalent AG For separating the variables and
4	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is $4e ms^{-1}$ to the left $(ii) b = 8e ms^{-1}$ $(8e)^2 = (4e)^2 + v^2 $ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v}\right)\right]$ $\left(\frac{20}{20 - v} - 1\right) \frac{dv}{dx} = 0.49$ (ii)	A1 M1 A1 A1 B1ft M1 A1ft A1 M1 A1 M1 M1 M1 M1	4	of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$ For using Newton's second law For relevant manipulation For synthetic division of v by $g - 0.49v$, or equivalent AG For separating the variables and
4	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is $4e \text{ ms}^{-1}$ to the left $(ii) b = 8e \text{ ms}^{-1}$ $(8e)^2 = (4e)^2 + v^2 $ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v}\right)\right]$ $\left(\frac{20}{20 - v} - 1\right) \frac{dv}{dx} = 0.49$ (ii) $\int \frac{20}{20 - v} dv = -20 \ln(20 - v)$ $-20 \ln(20 - v) - v = 0.49x (+C)$	A1 M1 A1 A1 B1ft M1 A1ft A1 M1 A1 M1 M1 M1 M1	4	of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$ For using Newton's second law For relevant manipulation For synthetic division of v by $g - 0.49v$, or equivalent AG For separating the variables and
4	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is $4e ms^{-1}$ to the left $(ii) b = 8e ms^{-1}$ $(8e)^2 = (4e)^2 + v^2 $ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v}\right)\right]$ $\left(\frac{20}{20 - v} - 1\right) \frac{dv}{dx} = 0.49$ (ii)	A1 M1 A1 B1ft M1 A1ft A1 M1 A1 M1 M1 B1	4	of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram ft b = -2a or b = a + 12e For using ' j component of A's velocity remains unchanged' ft b ² = a ² + v ² For using Newton's second law For relevant manipulation For synthetic division of v by g - 0.49v, or equivalent AG For separating the variables and
4	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is $4e \text{ ms}^{-1}$ to the left $(ii) b = 8e \text{ ms}^{-1}$ $(8e)^2 = (4e)^2 + v^2 $ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v}\right)\right]$ $\left(\frac{20}{20 - v} - 1\right) \frac{dv}{dx} = 0.49$ (ii) $\int \frac{20}{20 - v} dv = -20 \ln(20 - v)$ $-20 \ln(20 - v) - v = 0.49x (+C)$	A1 M1 A1 B1ft M1 A1ft A1 M1 A1 M1 A1 M1 A1 A1 A1	4	of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram ft b = -2a or b = a + 12e For using ' j component of A's velocity remains unchanged' ft b ² = a ² + v ² For using Newton's second law For relevant manipulation For synthetic division of v by g - 0.49v, or equivalent AG For separating the variables and integrating

4730 Mark Scheme January 2008

5	(i)	M1		For using Newton's second law with a =
				0
	$mgsin30^{\circ} = 0.75mgx/1.2$	A1		
	Extension is 0.8m	A1	3	AG
	(ii) PE loss = $mg(1.2 + 0.8)\sin 30^{\circ}$	B1	1	
	(mg)	D1		
	EE gain = $0.75 \text{mg}(0.8)^2/(2x1.2)$ (0.2mg)	B1		
	$[\frac{1}{2} \text{ mv}^2 = \text{mg} - 0.2 \text{mg}]$	M1		For an aquation with tarms representing
	[72 mv = mg = 0.2mg]	IVII		For an equation with terms representing PE, KE and EE in linear combination
	Mariana and 1: 200 mm	A 1	4	PE, KE and EE in linear combination
	Maximum speed is 3.96ms ⁻¹	A1	4	
	(iii) PE loss = $mg(1.2 + x)\sin 30^{\circ}$ or	B1ft		ft with x or d – 1.2 replacing 0.8 in (ii)
	mgdsin30°			
	EE gain = $0.75 \text{mgx}^2/(2x1.2)$ or	B1ft		ft with x or $d - 1.2$ replacing 0.8 in (ii)
	$0.75 \text{mg}(d-1.2)^2/(2x1.2)$			
	$[x^2 - 1.6x - 1.92 = 0, d^2 - 4d + 1.44 = 0]$	M1		For using PE loss = EE gain to obtain a
				3 term quadratic in x or d
	Displacement is 3.6m	A1	4	
Alternat	ive for parts (ii) and (iii) for candidates who use Newton's sec	cond law a	nd a =	v dv/dx:
	llowing x, y and z represent displacement from equil. pos ⁿ , ex			
	$[\text{mv dv/dx} = \text{mgsin}30^{\circ} - 0.75\text{mg}(0.8 + x)/1.2,]$	M1		For using N2 with $a = v \frac{dv}{dx}$
	$mv dv/dv = mgsin30^{\circ} - 0.75mg(0.0 + R)/1.2,$			Tor using 1(2 with a - v av/ax
	mv dv/dz = mgsin30° - 0.75mg(z - 1.2)/1.2]			
	$v^2/2 = -5gx^2/16 + C \text{ or}$	A1		
	$v^2/2 = gy/2 - 5gy^2/16 + C \text{ or}$	А		
	$\sqrt{2} = \frac{gy}{2} - \frac{3gy}{16} + \frac{C}{6}$ or $\sqrt{2} = \frac{5gz}{4} - \frac{5gz^2}{16} + \frac{C}{6}$			
		N/1		$E_{2} = \frac{1}{2} (0.8) = \frac{2}{2} (0.8) = \frac{2}{2} (1.2)$
	$[C = 0.6g + 5g(-0.8)^2/16 \text{ or } C = 0.6g \text{ or}$	M1		For using $v^2(-0.8)$ or $v^2(0)$ or $v^2(1.2) =$
	$C = 0.6g - 5g(1.2/4) + 5g(1.2)^2/16$			2(g sin30°)1.2 as appropriate
	$v^2 = (-5x^2/8 + 1.6)g \text{ or } v^2 = (y - 5y^2/8 + 1.2)g \text{ or } v^2 = (5z/2)$	A1		
	$-5z^2/8 - 0.9$)g			2 2 2
	(ii) $[v_{\text{max}}^2 = 1.6g \text{ or } 0.8g - 0.4g + 1.2g \text{ or } 5g - 2.5g]$	M1		For using $v_{max}^2 = v^2(0)$ or $v^2(0.8)$ or
	-0.9g]			$v^2(2)$ as appropriate
	Maximum speed is 3.96ms ⁻¹	A1		
	(iii) $[5x^2 - 12.8 = 0 \Rightarrow x = 1.6,$	M1		For solving $v = 0$
	$5y^2 - 8y - 9.6 = 0 \implies y = 2.4,$			
	$5z^2 - 20z + 7.2 = 0 \implies z = 3.6$			
	Displacement is 3.6m	A1	8	
Alternat	ive for parts (ii) and (iii) for candidates who use Newton's sec	cond law a	nd SH	M analysis.
	$[m \ddot{x} = mgsin30^{\circ} - 0.75mg(0.8 + x)/1.2 \rightarrow$	M1	1	For using N2 with
				$v^2 = \omega^2 (a^2 - x^2)$
	$\ddot{x} = -\omega^2 x; \ v^2 = \omega^2 (a^2 - x^2)$			(4 11)
	$v^2 = 5g(a^2 - x^2)/8$	A1		2
		M1		For using $v^2(-0.8) =$
				2(gsin30°)1.2
	$v^2 = 5g(2.56 - x^2)/8$	A1		
	(ii) $[v_{\text{max}}^2 = 5g \times 2.56 \div 8]$	M1		For using $v_{\text{max}}^2 = v^2(0)$
	Maximum speed is 3.96ms ⁻¹	A1		
	(iii) $[2.56 - x^2 = 0 \rightarrow x = 1.6]$	M1		For solving $v = 0$
	Displacement is 3.6m	A1		

	12 2	1	1	T
6	(i) $[\frac{1}{2}m7^2 = \frac{1}{2}mv^2 + 2mg]$	M1		For using the principle of conservation of energy
	Speed is 3.13ms ⁻¹	A1		
	$[T = mv^2/r]$	M1		For using Newton's second law
				horizontally and $a = v^2/r$
	Tension is 1.96N	A1ft	4	
	(ii) $[T - mg\cos\theta = mv^2/r]$	M1		For using Newton's second law radially
		M1		For using $T = 0$ (may be implied)
	$v^2 = -2g\cos\theta$	A1		
		M1		For using the principle of conservation of energy
	$\frac{1}{2}m7^2 = \frac{1}{2}mv^2 + mg(2 - 2\cos\theta)$	A1		
	$[-2g\cos\theta = 49 - 4g + 4g\cos\theta]$	M1		For eliminating v ²
	$6g\cos\theta = -9.8$	A1		May be implied by answer
	$\theta = 99.6$	A1	8	
Alternat	tive for candidates who eliminate v^2 before using $T = 0$.		Į.	'
	(ii) $[T - mg\cos\theta = mv^2/r]$	M1		For using Newton's second law radially
		M1		For using the principle of conservation of energy
	$\frac{1}{2}m7^2 = \frac{1}{2}mv^2 + mg(2 - 2\cos\theta)$	A1		
	$[T - mg\cos\theta = m(49 - 4g + 4g\cos\theta)2]$	M1		For eliminating v ²
		M1		For using $T = 0$ (may be implied)
	$-2g\cos\theta = 49 - 4g + 4g\cos\theta$	A1ft		ft error in energy equation
	$6g\cos\theta = -9.8$	A1		May be implied by answer
	$\theta = 99.6$	A1	8	

_	T 4 (4 22)/22		ı	
7	(i) $T = 4mg(4 + x - 3.2)/3.2$	B1		
	[ma = mg - 4mg(0.8 + x)/3.2]	M1		For using Newton's second law
	$4\ddot{x} = -49x$	A1	3	AG
	(ii) Amplitude is 0.8m	B1		(from 4 + A = 4.8)
	Period is $2\pi/\omega$ s where $\omega^2 = 49/4$	B1		
	$\frac{1 \text{ crited is } 2\pi t / \text{ to s where } \omega = \pm \pi t / \pm 1}{2\pi t / \text{ to s where } \omega = \pm \pi t / \pm 1}$	M1		String is instantaneously slack when
		IVII		shortest $(4 - A = 3.2 = L)$. Thus required
				interval length = period.
	Slack at intervals of 1.8s	A1	4	AG
	(iii) [ma = -mgsin θ]	M1		For using Newton's second law
	(m) [ma = -mgsm \(O\)]	1111		tangentially
	, ä a	A1		tungentuny
	$mL\ddot{\theta} = -mg\sin\theta$			
	For using $\sin \theta \approx \theta$ for small angles and obtaining $\ddot{\theta} \approx$	A1	3	AG
	$-(g/L)\theta$			
	(iv) $[\theta = 0.08\cos(3.5\text{x}0.25)] (= 0.05127)$	M1		For using = $_{0}\cos\omega t$ where $\omega^{2}=12.25$
	$[0] = 0.08\cos(3.3\times0.23) = 0.03127$	IVII		
				(may be implied by $\mathcal{G} = -\omega$ osin ω t)
	$[\dot{\theta} = -3.5(0.08)\sin(3.5x0.25),$	M1		For differentiating = $_{0}\cos\omega t$ and
	$\dot{\theta}^2 = 12.25(0.08^2 - 0.05127^2)$			using $\dot{\mathcal{G}}$ or for using
	0 -12.23(0.08 - 0.03127)]			$\dot{\theta}^2 = \omega^2 (\theta_0^2 - \theta^2)$ where $\omega^2 = 12.25$
				` 0
	$\dot{\theta} = \mp 0.215$	A1		May be implied by final answer
	[v = 0.215x9.8/12.25]	M1		Forming v. I. Oand I. σ/σ^2
				For using $v = L \mathcal{G}$ and $L = g/\omega^2$
	Speed is 0.172 ms ⁻¹	A1	5	