4730 Mechanics 3

1	(i) $\left[0.5\left(\mathrm{v}_{\mathrm{x}}-5\right)=-3.5,0.5\left(\mathrm{v}_{\mathrm{y}}-0\right)=2.4\right]$ Component of velocity in x -direction is $-2 \mathrm{~ms}^{-1}$ Component of velocity in y-direction is $4.8 \mathrm{~ms}^{-1}$ Speed is $5.2 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		For using $\mathrm{I}=\mathrm{m}(\mathrm{v}-\mathrm{u})$ in x or y direction AG
SR For candidates who obtain the speed without finding the required components of velocity (max 2/4)				
	Components of momentum after impact are -1 and 2.4 Ns Hence magnitude of momentum is 2.6 Ns and required speed is $2.6 / 0.5=5.2 \mathrm{~ms}^{-1}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$		
	(ii)	M1		For using $\mathrm{I}_{\mathrm{y}}=\mathrm{m}\left(0-\mathrm{v}_{\mathrm{y}}\right)$ or $\mathrm{I}_{\mathrm{y}}=-\mathrm{y}$-component of $1^{\text {st }}$ impulse
	Component is -2.4 Ns	A1	2	

2	(i) $\begin{aligned} & 50 \times 1 \sin \beta=75 \times 2 \cos \beta \\ & \tan \beta=3 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	For 2 term equation, each term representing a relevant moment AG
	(ii) Horizontal force is 75 N Vertical force is 50 N	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	2	
	(iii) For not more than one error in $\begin{aligned} & \mathrm{Wx} 1 \sin \alpha+50(2 \sin \alpha+1 \sin \beta)= \\ & \quad 75(2 \cos \alpha+2 \cos \beta) \text { or } \mathrm{Wx} 1 \sin \alpha+ \\ & 50 \times 2 \sin \alpha=75 \times 2 \cos \alpha \\ & 0.6 \mathrm{~W}+107.4 \ldots=167.4 \ldots \text { or } 0.6 \mathrm{~W}+60=120 \\ & \mathrm{~W}=100 \end{aligned}$	M1 A1 A1 A1	4	For taking moments about A for the whole or for AB only Where $\tan \alpha=0.75$

4	$\begin{aligned} & \text { (i) } \quad[\mathrm{mg}-0.49 \mathrm{mv}=\mathrm{ma}] \\ & m v \frac{d v}{d x}=m g-0.49 m v \\ & {\left[\frac{v(d v / d x)}{g-0.49 v}=1\right]} \\ & {\left[\frac{v}{9.8-0.49 v} \equiv \frac{-1}{0.49}\left(\frac{(9.8-0.49 v)-9.8}{9.8-0.49 v}\right)\right]} \\ & \left(\frac{20}{20-v}-1\right) \frac{d v}{d x}=0.49 \end{aligned}$	M1 A1 M1 M1 A1	5	For using Newton's second law For relevant manipulation For synthetic division of v by g - 0.49v, or equivalent AG
	(ii) $\begin{aligned} & \int \frac{20}{20-v} d v=-20 \ln (20-v) \\ & -20 \ln (20-v)-\mathrm{v}=0.49 \mathrm{x} \quad+\mathrm{C}) \\ & {[-20 \ln 20=\mathrm{C}]} \\ & \mathrm{x}=40.8(\ln 20-\ln (20-\mathrm{v}))-2.04 \mathrm{v} \end{aligned}$	M1 B1 A1ft M1 A1	5	For separating the variables and integrating For using $\mathrm{v}=0$ when $\mathrm{x}=0$ Accept any correct form

	6 (i) Sp T 	(i) $\quad\left[1 / 2 \mathrm{~m}^{2}=1 / 2 \mathrm{mv}^{2}+2 \mathrm{mg}\right]$ Speed is $3.13 \mathrm{~ms}^{-1}$ $\left[\mathrm{T}=\mathrm{mv}^{2} / \mathrm{r}\right]$ Tension is 1.96 N	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1ft } \end{aligned}$	4	For using the principle of conservation of energy For using Newton's second law horizontally and $\mathrm{a}=\mathrm{v}^{2} / \mathrm{r}$
	(ii $1 / 2 \mathrm{I}$ $[-2$ $6 \mathrm{~g}$ θ	$\begin{aligned} & \text { (ii) } \quad\left[\mathrm{T}-\mathrm{mg} \cos \theta=\mathrm{mv}^{2} / \mathrm{r}\right] \\ & \mathrm{v}^{2}=-2 \mathrm{~g} \cos \theta \\ & 1 / 2 \mathrm{~m} 7^{2}=1 / 2 \mathrm{mv} \\ & {[-2 \mathrm{~g} \cos \theta=49-4 \mathrm{mg}(2-2 \cos \theta)} \\ & 6 \mathrm{~g} \cos \theta=-9.8 \\ & \theta=99.6 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	8	For using Newton's second law radially For using $\mathrm{T}=0$ (may be implied) For using the principle of conservation of energy For eliminating v^{2} May be implied by answer
	Alternative (i)	$\begin{aligned} & \text { (ii) } \quad\left[\mathrm{T}-\mathrm{mg} \cos \theta=\mathrm{mv}^{2} / \mathrm{r}\right] \\ & \text { ve for candidates who eliminate }{ }^{2} \text { before } \\ & 1 / 2 \mathrm{~m} 7^{2}=1 / 2 \mathrm{mv}^{2}+\mathrm{mg}(2-2 \cos \theta) \\ & {[\mathrm{T}-\mathrm{mg} \cos \theta=\mathrm{m}(49-4 \mathrm{~g}+4 \mathrm{~g} \cos \theta) 2]} \\ & -2 \mathrm{~g} \cos \theta=49-4 \mathrm{~g}+4 \mathrm{~g} \cos \theta \\ & 6 \mathrm{~g} \cos \theta=-9.8 \\ & \theta=99.6 \end{aligned}$	M1 M1 A1 M1 M1 A1ft A1 A1	8	For using Newton's second law radially For using the principle of conservation of energy For eliminating v^{2} For using $\mathrm{T}=0$ (may be implied) ft error in energy equation May be implied by answer

7	$\begin{aligned} & \text { (i) } \quad \mathrm{T}=4 \mathrm{mg}(4+\mathrm{x}-3.2) / 3.2 \\ & {[\mathrm{ma}=\mathrm{mg}-4 \mathrm{mg}(0.8+\mathrm{x}) / 3.2]} \\ & 4 \ddot{\mathrm{x}}=-49 \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	For using Newton's second law AG
	(ii) Amplitude is 0.8 m Period is $2 \pi / \omega$ s where $\omega^{2}=49 / 4$ Slack at intervals of 1.8 s	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{M} 1 \\ & \\ & \mathrm{~A} 1 \end{aligned}$	4	(from $4+A=4.8$) String is instantaneously slack when shortest (4-A = $3.2=\mathrm{L}$). Thus required interval length = period. AG
	$\begin{aligned} & \quad[\mathrm{ma}=-\mathrm{mg} \sin \theta] \\ & \mathrm{mL} \ddot{\theta}=-\mathrm{mgsin} \theta \end{aligned}$ For using $\sin \theta \approx \theta$ for small angles and obtaining $\ddot{\theta} \approx$ $\text { .-(g/L) } \theta$	M1 A1 A1	3	For using Newton's second law tangentially AG
	$\begin{aligned} & \text { (iv) } \quad[\theta=0.08 \cos (3.5 x 0.25)](=0.05127 . .) \\ & {[\dot{\theta}=-3.5(0.08) \sin (3.5 \times 0.25)} \\ & \left.\dot{\theta}^{2}=12.25\left(0.08^{2}-0.05127 . .^{2}\right)\right] \\ & \dot{\theta}=\mp 0.215 \\ & {[\mathrm{v}=0.215 \times 9.8 / 12.25]} \end{aligned}$ $\text { Speed is } 0.172 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	5	For using $={ }_{o} \cos \omega$ t where $\omega^{2}=12.25$ (may be implied by $\dot{\vartheta}=-\omega \quad{ }_{0} \sin \omega \mathrm{t}$) For differentiating $={ }_{o} \cos \omega t$ and using $\dot{\vartheta}$ or for using $\dot{\theta}^{2}=\omega^{2}\left(\theta_{o}{ }^{2}-\theta^{2}\right)$ where $\omega^{2}=12.25$ May be implied by final answer For using $\mathrm{v}=\mathrm{L} \dot{\vartheta}$ and $\mathrm{L}=\mathrm{g} / \omega^{2}$

